

Open System Architecting

25 October 2000

Jerry Murdock

Open Systems - Joint Task Force, (703) 602-0851, E-MAIL murdocj@acq.osd.mil

Dwayne Hardy

Open Systems - Joint Task Force, (703) 602-0851, E-MAIL hardymd@acq.osd.mil

Why Open Systems? Affordability

DOD no longer "drives" development. Instead, it must use what industry has developed for commercial applications.

DEVELOPER & PRODUCER

BUYER & INTEGRATOR

Why Open Systems? **Supportability**

Without OSA Must replace with identical module With OSA May replace with identical OR other configuration • Module interface rigorously controlled » New interface must be backward compatible Numerous operational configurations possible » Not all possible configurations explicitly tested

Permits new Module Replacement or Upgrade **Strategies**

What is an Open System?

- Open Systems = Commonality
- Open Systems = COTS
- Open Systems $= F^3 I$

• Open Systems = A design based on non-proprietary interface standards broadly accepted and used throughout industry

What is an Open Systems Architecture?

A Standards-Based Architecture

What is an Open Systems Approach?

- An integrated **technical** & business strategy
- Modular design of hardware and software
- Applying commercial, widely used interface standards in weapon systems
- To buy rather than develop system components

What is Architecture?

"The structure of components, their interrelationships, and the principles governing their design and evolution." [IEEE STD 610.12]

An Architecture is <u>not</u> a Product or System Description!

What is Appropriate Level of OSA Application?

Joint Strike Fighter Architectural Hierarchy Example Context for Avionics Architecture

What is the Role of Standards in an Open Systems Approach?

Well defined interfaces!

Which Standards Should be Selected?

Preferably those Widely Accepted & Supported in the Marketplace

Where is Architecting Performed in a System's Life Cycle?

A little bit everywhere!

Where is Architecture Performed in SE Process?

Where is Architecture Data Found?

Throughout the life-cycle!

What is the Relationship of SBA IDEs to Architecture?

Both define a system!

Architecture Related Tools

- Major Categories
 - Architecture Modeling
 - Software Design and Modeling
 - Requirements Management
 - CAD/CAM
 - Product Data Management
 - Modeling & Simulation
 - Configuration Management

Observations

- Availability of Architecture Modeling tools are limited and generally oriented to software
- Most tools
 - Rely on proprietary internal data formats
 - Are oriented toward a particular discipline or phase of system life-cycle
 - Don't generally complement each other or work well together
 - Require design partners to adopt a common suite

Practical Experience – **AV-8B OSCAR Pilot**

Mission Needs and Operational Requirements Will Continue to Evolve Capabilities

AV-8Bs Must Remain Operationally Capable Through 2023

Two Components Impact ~ 75% of Routine Update Maintenance Cost

• ARC-210

• ATHS

Unfunded

Funded

Lessons Learned

Central Computer

F-15 Advanced Display Core Processor

AV-8B OS Core Avionics Requirement

Modular Object Oriented Software (abandoned in favor of conventional design)

OS Advanced Display Core Processor

Original AYK-14 New Mission Computer

Process

Pilot Programs

Products

Establish Acquisition Process Guidelines:

- · Program Management
- Performance Specs
- Interface Definition
- · Supplier Partnerships
- Contracting
- · Life Cycle Support

Establish Benchmarks

Apply Guidelines Track to Benchmarks

· Quantify Paybacks

Provide Deliverables: Lessons Learned

- Paybacks
- R&D
- Procurement
- O&S

Issues & Challenges

- Several items remain:
 - Protection of proprietary info & competitive advantages
 - Partitioning architecture decisions between customer & supplier
 - Need an "up-front" investment and incentives
 - An architecture is a long-term design plan, it must be supported by a corresponding long term & stable business decisions
 - There may be a one-time cost burden to migrate to the new architecture
 - Keeping the architecture technology independent
 - Definition of architectures in terms that are widely accepted and transcend engineering disciplines and lifecycle phases

Way Ahead for Definition of Architectures?

- First, identify architecture data in IDE & IPPD environments
- Second, conceive and adopt a universal framework for representing architecture data
 - Results would be something like OAGI, HL7, RosettaNet, xmlEB,
 BizTalk schemas for architecture and SE process data
 - Two related efforts hold much promise
 - ISO 15288 & 10303 APP 233 efforts
 - OpenGroup Architecture Description Markup Language proposal

Conclusions

- Challenges are mostly social and not technical
- In essence, a Standard Based Architecture approach is about:

Consensus

Collaboration

Communication

Compromise

Integrity

C4I is hard and slow work, so keep the faith!